

Transparent Embedded Compression in Systems-on-Chip

Bram Riemens, Principal Scientist, Research, NXP Semiconductors bram.riemens@nxp.com With René van der Vleuten, Pieter van der Wolf, Geogy Jacob, Jan-Willem van de Waerdt, Johan Janssen IEEE Workshop on Signal Processing Systems SiPS 2006 Banff, AB, Canada. October 2-4, 2006

Operating principle

Architecture

Algorithm

Introduction – Existing SoC system

Introduction – Application on SoC

- Unified memory located externally from the processing chip
- Significant amount of available memory bandwidth consumed by image data
- Both hardware and software processing components
- Many applications and use-cases variations in resource use

Operating principle

Architecture

Algorithm

Data transfer of existing systems

Data transfer with embedded compression

Memory layout visualization

Problem definition summary

- Memory access speed improves at slower pace than processing speed
 - Bandwidth is becoming a dominant design issue
- Consumer market, high volume
 - Cost effective solutions required
- Actual bandwidth consumption is dynamic; depending on
 - Algorithms
 - Use-case (details!)
 - Image contents
 - Caching behavior
- Bandwidth limit is hard boundary
 - For real-time systems: too late is an error
- Cope with legacy hardware and software components

Solution approach

Solution: transparent embedded compression

Compression

Reduce off-chip memory bandwidth consumed by image data

Embedded

Compress on write, decompress on read So: freedom of algorithm choice (not bound to any standard)

Transparent

No need to adapt signal processing units to add compression So: incorporate compression in the communication infrastructure

Operating principle

Architecture

Algorithm

Architecture – Requirements summary

- Compression module is part of the communication infrastructure
- Operate on single data transaction to/from memory (no state)
- Latency
 - Predictable for compressed transfers
 - Minimal for other transfers

Architecture – Memory bus module

Architecture – Block diagram

Operating principle

Architecture

Algorithm

Algorithm – Requirements summary

- Operate on single data transaction to/from memory (no state)
- Low complexity algorithm (cost)
- Emphasis on bandwidth guarantees, so lossy compression
- Compression ratio at least 1.5
- No significant impact on image quality
- Adjustable compression ratio
- Latency
 - Predictable for compressed transfers
 - Minimal for other transfers

Algorithm – Block diagram and features

- Assuming horizontally neighboring pixel values
- Dynamic split of MSB / LSB part
 - MSB: lossless, DPCM and VLC (modified "Rice" code)
 - LSB: lossy, distribute bit planes over remaining space
- Can handle:
 - Y, U/V, and R/G/B multiplexing schemes
 - Video images and graphics textures
- No further signal degradation after first compression pass
- Few control bits to pass coding information to decoder

Algorithm – Image quality verification

Extensive "torture" tests

- Large database with critical scenes
- Special test patterns, noisy data
- Repeated compression / decompression to prove viability in recursive loops
- Both 8 and 10 bits sources
- Combined with other enhancement functions (e.g. sharpness) to increase sensitivity to artifacts
- Visual inspection to obtain perceptually optimal result

For reference: PSNR on "Lena":

—	8 bit	1.5	54.81 dB	(target use-case)
_	10bit	1.875	54.60 dB	(target use-case)

– 8 bit 2.0 45.63 dB (fallback use-case)

Operating principle

Architecture

Algorithm

Results – Data

- Effective bandwidth saving
 - Compression ratio 1.5 20% 25%
 - Compression ratio 2.0 \pm 40%
- Area: ± 1 mm² in 90 nm CMOS
- Clock: 350 MHz
- Latency
 - 128 byte transfer: 80 cy compression; 58 cy decompression
 - 256 byte transfer: 144 cy compression; 106 cy decompression
 - Note: prefetching can hide this additional latency

Conclusions

- Transparent embedded compression in industrially relevant context
- Requirements are met at reasonable cost
 - Legacy IP (hw or sw) still applicable
 - Add-on to existing communication infrastructure
- Enable dynamic trade-off between bandwidth consumption and image quality, enabling:
 - Quality-of-service
 - De-risking of system design
 - Optimize image quality over processing chain with minimal bandwidth use
 - System differentiation without SoC redesign (apply different RAM speed ratings)

