US 20100328538A1

a2y Patent Application Publication o) Pub. No.: US 2010/0328538 A1

a9 United States

Al-Kadi et al.

43) Pub. Date: Dec. 30, 2010

(54) PARALLEL THREE-DIMENSIONAL
RECURSIVE SEARCH (3DRS) MEANDERING
ALGORITHM

(75) Inventors: Ghiath Al-Kadi, Findhoven (NL);
Andrei Sergeevich Terechko,
Eindhoven (NL); Jan
Hoogerbrugge, Eindhoven (NL);
Abraham Karel Riemens,
Eindhoven (NL); Klaas Brink,

Eindhoven (NL)

Correspondence Address:

NXP, B.V.

NXP INTELLECTUAL PROPERTY & LICENS-
ING

M/S41-SJ, 1109 MCKAY DRIVE

SAN JOSE, CA 95131 (US)

(73) Assignee: NXP B.V., Eindhoven (NL)

(21) Appl. No.: 12/573,205

150—-\

START : S S

Raster Scan A

(22) Filed: Oct. 5,2009
Related U.S. Application Data

(60) Provisional application No. 61/221,248, filed on Jun.

29, 2009.
Publication Classification
(51) Int.ClL
HO04N 5/14 (2006.01)
(52) US.CL ..ooovvvviviviiiiieene 348/699; 348/E05.062
57 ABSTRACT

Various exemplary embodiments relate to a method and
related motion estimation unit for performing motion estima-
tion on video data comprising a plurality of frames. The
method may begin by reading a current frame of the plurality
of frames from a memory of a motion estimation unit. The
method may then select a motion vector for each respective
block of pixels in a current row of the current frame. The step
of selecting the motion vector may include, for each respec-
tive block, selecting, by the motion estimation unit, a candi-
date vector for at least one block directly surrounding the
respective block based on a determination of whether the
directly surrounding block has been processed for the current
frame, calculating, for each candidate vector, a difference
value, and selecting, as the motion vector, the candidate vec-
tor with the lowest difference value.

wa

Raster Scan B

Patent Application Publication

START

START = =

Dec. 30,2010 Sheet 1 of 5

Temporal

| Spatial

FIG. 14

sy
7] Current

US 2010/0328538 Al

bt START

A

e

Raster Scan A

FIG. 1B

Raster Scan B

Patent Application Publication

N

225 —

Dec. 30,2010 Sheet 2 of 5 US 2010/0328538 A1
0
(Start)K— 205
.
‘ Read current frame 210
1
‘ Begin processing of row i 215
220
Y N
— 230

Slart with block at first side of row |

Start with block at second side of row

Select candidate vector for each surrounding block - 240
Calculate difference value for each candidate vector 245
Setect candidate vector with lowest difference value 250

;
255
ore
blocks in Y
row i?
i=i+2 260
265
Y More
rows?
N
(Stop)r 270

FIG. 2

Patent Application Publication

G-1, SN DAG=1, 1+ 1)

Dec. 30,2010 Sheet 3 of 5

Wi

i

US 2010/0328538 Al

Temporal

(+1, i-1)

(i+1,j+1)

Spatial

FIG. 3

Patent Application Publication Dec. 30,2010 Sheet 4 of 5 US 2010/0328538 A1

440

Temporal 1 Current

FIG. 44

410
430

420

Jﬁ

Terporal

Current

FIG. 4B

Patent Application Publication Dec. 30,2010 Sheet S of 5 US 2010/0328538 A1

500 —~
520
_\
ME Processor 1 DMA >
530 —\ //— 550
510 ~ ME Processor 2 DMA
Control
Unit Memory
540
\
ME Processor N DMA ,

FIG. 5

US 2010/0328538 Al

PARALLEL THREE-DIMENSIONAL
RECURSIVE SEARCH (3DRS) MEANDERING
ALGORITHM

CROSS REFERENCE TO RELATED
APPLICATIONS

[0001] This application claims the benefit of priority from
U.S. Provisional Application Ser. No. 61/221,248, filed on
Jun. 29, 2009, the disclosure of which is incorporated herein
by reference in its entirety.

TECHNICAL FIELD

[0002] Various exemplary embodiments relate generally to
motion estimation and more particularly, but not exclusively,
to a parallel three-dimensional recursive search (3DRS)
meandering algorithm.

BACKGROUND

[0003] Motion estimation techniques play an integral role
in video compression and processing applications. As an
example, scan rate up-conversion is a common feature imple-
mented by many televisions. A number of modern televisions
support frame rates up to 120 frames per second (fps), while
the incoming signal may be represented at a lower frame rate.
For example, many cable broadcasts include a signal at a
native rate of 60 fps. Through the use of motion estimation
and motion compensation techniques, a television may
receive a 60 fps signal, but output a 240 fps display, thereby
increasing clarity and reducing motion artifacts. In other
words, by applying these techniques to the incoming frames,
the television may interpolate 60 additional frames per sec-
ond to fill in the gaps.

[0004] With the advent of high definition signals and
advanced high resolution display technologies, such as Lig-
uid Crystal Display (LCD) and Plasma, the amount of data
included in video signals is rapidly increasing. As a corollary,
as the amount of data increases, the amount of processing
power required to perform real-time motion estimation also
increases. Thus, hardware and software designers have given
considerable attention to optimizing the algorithms used for
motion estimation for real-time applications.

[0005] The Three-Dimensional Recursive Search (3DRS)
algorithm, described in “True-Motion Estimation with 3-D
Recursive Search Block Matching,” by de Haan et al. (incor-
porated by reference herein) is one of the most widely-used
motion estimation methods for applications requiring real-
time, cost-effective processing. The 3DRS algorithm is based
on block matching, such that a frame is divided into a number
of pixel blocks and processing is performed for each such
block. For each block, the algorithm calculates a motion
vector representing the movement of the corresponding block
from the previous frame. In order to determine the motion
between frames, the 3DRS algorithm makes two assump-
tions: (i) objects are larger than a block of pixels; and (ii)
objects have inertia. These assumptions suggest that motion
in a particular block of pixels is related to motion of the
surrounding blocks and that motion in the previous frame can
represent motion in the current frame.

[0006] Given these assumptions, typical implementations
of'the 3DRS algorithm must follow a predetermined scanning
order, as motion information is only available for the blocks
that have already been processed. More specifically, when
implementing a meandering scanning order, each block of

Dec. 30, 2010

pixels depends on a previous block of pixels in the same row
and a number of blocks in the previously-processed row.
These dependencies make it difficult to apply an effective
parallelization technique to the algorithm. In other words,
current implementations of the 3DRS algorithm are not fully
scalable and do not map easily onto multi-core processors.
[0007] In view of the foregoing, it would be desirable to
implement a parallelized 3DRS meandering motion estima-
tion algorithm that does not compromise picture quality. It
would also be desirable to implement a motion estimation
device that allows for multi-core execution of the 3DRS
motion estimation algorithm. Other desirable aspects will be
apparent to those of skill in the art upon reading and under-
standing the present specification.

SUMMARY

[0008] Inlight of the present need for a parallelizable 3DRS
meandering motion estimation algorithm, a brief summary of
various exemplary embodiments is presented. Some simpli-
fications and omissions may be made in the following sum-
mary, which is intended to highlight and introduce some
aspects of the various exemplary embodiments, but not to
limit the scope of the invention. Detailed descriptions of a
preferred exemplary embodiment adequate to allow those of
ordinary skill in the art to make and use the inventive concepts
will follow in later sections.

[0009] Various exemplary embodiments relate to a method
and related motion estimation unit for performing motion
estimation on video data comprising a plurality of frames.
The method may begin by reading a current frame of the
plurality of frames from a memory of a motion estimation
unit, the current frame comprising a plurality of rows. The
method may then select a motion vector for each respective
block of pixels in a current row of the current frame. The step
of selecting the motion vector may include, for each respec-
tive block, selecting, by the motion estimation unit, a candi-
date vector for at least one block directly surrounding the
respective block based on a determination of whether the
directly surrounding block has been processed for the current
frame, calculating, for each candidate vector, a difference
value equal to the difference between the respective block in
the current frame and the block corresponding to the candi-
date vector in a frame with a different time instance, and
selecting, as the motion vector, the candidate vector with the
lowest difference value. Processing at least one subsequent
row may occur by repeating the step of selecting a motion
vector for each block of pixels in at least one subsequent row
prior to completion of processing of at least one block of the
current row.

[0010] It should be apparent, for reasons described in fur-
ther detail below, that the parallelized 3DRS motion estima-
tion algorithm is scalable and can easily be mapped to mul-
tiple processing units, such as multithreaded/multi-core
processors and co-processors. Furthermore, picture quality of
the algorithm described herein is as good as or better than the
original non-parallelized 3DRS algorithm for most video
sequences.

BRIEF DESCRIPTION OF THE DRAWINGS

[0011] In order to facilitate better understanding of various
exemplary embodiments, reference is made to the accompa-
nying drawings, wherein:

US 2010/0328538 Al

[0012] FIG. 1A is a schematic diagram of a meandering
scan order used for processing blocks in a 3DRS algorithm;
[0013] FIG. 1B is a schematic diagram illustrating the
decomposition of one meandering scan into two raster scans;
[0014] FIG. 2 is a flowchart of an exemplary method of
performing a parallelized meandering 3DRS algorithm;
[0015] FIG. 3 is a schematic diagram illustrating an exem-
plary candidate block selection used in the parallelized mean-
dering 3DRS algorithm;

[0016] FIG. 4A is a schematic diagram of an exemplary
parallelized meandering 3DRS algorithm in a first phase of
execution;

[0017] FIG. 4B is a schematic diagram of an exemplary
parallelized meandering 3DRS algorithm in a second phase
of execution; and

[0018] FIG. 5 is a schematic diagram of an exemplary
motion estimation unit for implementation of a parallelized
meandering 3DRS algorithm.

DETAILED DESCRIPTION

[0019] Referring now to the drawings, in which like numer-
als referto like components or steps, there are disclosed broad
aspects of various exemplary embodiments.

[0020] As used herein, “frame” refers to an image, a field
(e.g., in the case of interlaced video input), or a frame (e.g., in
the case of film material or progressive formats). Other suit-
able objects for processing for motion estimation will be
apparent to those of skill in the art and should be understood
to be captured by the term “frame.”

[0021] Furthermore, in the detailed description below, ref-
erence is made to processing in “rows.” It should be apparent
that processing of “rows” refers to processing of a sequence
of adjacent blocks with respect to any orientation. In other
words, processing may proceed left to right, right to left, top
to bottom, bottom to top, or in any other suitable direction
apparent to those of skill in the art.

[0022] FIG.1A s aschematic diagram 100 of a meandering
scan order used for processing blocks in a 3DRS algorithm.
As used herein, the motion vectors determined for blocks of
pixels in the current frame are referred to as “spatial candi-
dates,” while the motion vectors determined for blocks in a
frame with a different time instance are referred to as “tem-
poral candidates.”

[0023] For each block to be processed, the algorithm may
calculate a two-dimensional motion vector indicating dis-
placement of a pixel or pixel block from the current location
due to motion. As illustrated, the algorithm starts processing
at block 1 and proceeds across the first row to block 5. After
processing of block 5, execution proceeds to the second row,
with processing of block 10, then across the second row, to
block 6. Execution then proceeds to block 11 and, subse-
quently, block 12.

[0024] In typical implementations of the 3DRS algorithm,
execution of block 12 could not proceed until the dependen-
cies were satisfied for all directly surrounding blocks. More
specifically, because block 12 is dependent upon spatial can-
didates corresponding to blocks 6, 7, 8, and 11, block 12
cannot be processed until a motion vector has been deter-
mined for each of these blocks for the current frame. In
contrast, for blocks 13,16, 17, and 18, the algorithm may rely
on the motion vector for the block from the previous frame
(i.e., the temporal candidate).

[0025] As should be apparent from this description, a typi-
cal implementation of a meandering 3DRS algorithm is par-

Dec. 30, 2010

allelizable for multiple cores, but is not scalable and efficient
due to synchronization, memory latency, required bandwidth,
and a number of other factors. As a result, utilizing multiple
cores for a meandering 3DRS algorithm fails to provide per-
formance gains proportional to the number of cores used.
[0026] FIG. 1B is a schematic diagram 150 illustrating the
decomposition of one meandering scan into two raster scans,
Raster Scan A and Raster Scan B. As illustrated, Raster Scan
A starts processing with a first block of a first row, then
proceeds across the row. After processing of the last block in
the first row, execution jumps to the first block of the third
row, then proceeds across the third row. Raster Scan A con-
tinues execution in this manner until all odd rows have been
processed.

[0027] Similarly, Raster Scan B starts processing with a last
block of the second row, then proceeds across the row. After
processing of the first block in the second row, execution
jumps to the last block of the fourth row, then proceeds across
the fourth row. As with Raster Scan A, Raster Scan B contin-
ues execution in this manner until all even rows have been
processed.

[0028] Various exemplary embodiments disclosed herein
enable a combination of the benefits of the meandering scan
and raster scan. In particular, as described in further detail
below, various exemplary embodiments allow for the scalable
parallelization of the raster scan, while providing the superior
convergence properties of the meandering scan. In particular,
because the scan direction alternates between lines, the algo-
rithm results in propagation toward the motion of the object
itself, rather than the direction of the scan, thereby resulting in
a visible increase in picture quality.

[0029] FIG. 2is a flowchart of an exemplary method 200 of
performing a parallelized meandering 3DRS algorithm.
Method 200 may be executed by, for example, a motion
estimation unit, such as the one illustrated in FIG. 5,
described in further detail below. Other suitable components
for execution of method 200 will be apparent to those of skill
in the art.

[0030] Method 200 illustrates a modified 3DRS algorithm
as executed on a first group of rows. Thus, a particular pro-
cessor may execute all even rows or, alternatively, all odd
rows. It should be apparent, however, that execution of the
method is not limited to arrangements with two processors.
Rather, any number of processors or co-processors may be
used. For example, if four processors are used, each processor
may execute one row, every four rows. Regardless of the
number of processors used, each of the processors may begin
processing substantially simultaneously, such that the algo-
rithm is parallelized. Other suitable arrangements and execu-
tion schemes will be apparent to those of skill in the art.
[0031] Method 200 starts at step 205 and proceeds to step
210, where a particular processor or co-processor of the
motion estimation unit reads the current video frame from
memory. The current frame may comprise a plurality of pixels
and may be broken into a plurality of rows and columns, each
consisting of a number of blocks.

[0032] After reading the frame from memory, method 200
proceeds to step 215, where a particular processor or co-
processor of the motion estimation unit begins processing of
arow i. As an example, if the processor is to process all odd
rows, the processor may begin with the first row in the frame,
such that i=1. Alternatively, if the processor is to process all
even rows, the processor may begin with the second row in the
frame, such that i=2.

US 2010/0328538 Al

[0033] Method 200 then proceeds to decision step 220,
where the processor determines whether i is odd. When i is
odd, method 200 proceeds to step 225, where the processor
determines that execution of the algorithm on row i is to
proceed from a first side of the row. Alternatively, when i is
even, method 200 proceeds to step 230, where the processor
determines that execution of the algorithm on row i is to
proceed from a second side of the row, opposite the first side.
[0034] After selecting an appropriate side of the row for
start of execution in step 225 or step 230, method 200 pro-
ceeds to step 240, where the processor begins processing to
determine a motion vector representing the estimated motion
of the current block. In particular, in order to simplify pro-
cessing, the processor may select a motion vector for the
current block from a group of candidate vectors, each corre-
sponding to one of the current block’s neighbors. According
to various exemplary embodiments, the processor may
modify the candidate selection procedure based on a deter-
mination of whether the directly surrounding block has been
processed for the current frame. More specifically, the pro-
cessor may process each directly surrounding block to add a
previously-calculated vector corresponding to that block to a
set of candidate vectors.

[0035] As described in further detail below in connection
with FIG. 3, the processor may first determine whether the
particular directly surrounding block has been processed for
the current frame. When the directly surrounding block has
been processed for the frame, this indicates that a spatial
candidate vector is available for that block, and the processor
may therefore add this vector to the set of candidate vectors.
Alternatively, when the directly surrounding block has not
been processed for the frame, the processor may determine
whether an indirectly surrounding block has been processed
for the current frame. As an example, the processor may
determine whether the indirectly surrounding block in the
same column as the surrounding block, two rows from the
current row, has been processed for the current frame. It
should be apparent, however, that the indirectly surrounding
block is not limited to this specific block. Rather, the proces-
sor may access any block that is not a directly surrounding
block.

[0036] When the indirectly surrounding block has been
processed for the current frame, the processor may add this
vector to the candidate set. Finally, if neither the directly
surrounding block nor an indirectly surrounding block has
been processed for the frame, the processor may select a
temporal candidate vector, which corresponds to the calcu-
lated vector of the surrounding block from a frame with a
different time instance (i.e., a directly previous frame, indi-
rectly previous frame, directly subsequent frame, or indi-
rectly subsequent frame).

[0037] It should be apparent that, by selecting a candidate
vector based on the execution status of the algorithm, the
algorithm can be parallelized without sacrificing accuracy. In
particular, by preferentially using a candidate vector calcu-
lated for the current frame from either the directly surround-
ing block or an indirectly surrounding block, the algorithm
may give priority to spatial candidates, thereby leading to
more accurate motion information.

[0038] After adding a candidate vector for at least one
directly surrounding block to the set of candidate vectors,
method 200 proceeds to step 245, where the processor calcu-
lates a difference value for each vector in the set. The differ-
ence value for the candidate vector may represent the accu-

Dec. 30, 2010

racy of the motion estimation when the candidate vector is
used to represent motion of the respective block from the
previous frame.

[0039] In particular, the processor may identify a first
match region in the current frame corresponding to the posi-
tion of the respective block. The processor may also identify
a second match region in a frame with a different time
instance, where the location of the second match region cor-
responds to the current block’s location translated by the
candidate vector. After selecting the two match regions, the
processor may then compare the pixels of the two match
regions to determine the difference value.

[0040] As will be apparent to those of skill in the art, a
number of different match regions may be used. For example,
the processor may select match regions of the same size of the
current block, larger than the current block, or that are sub-
samples with respect to the current block. Similarly, as will
also be apparent to those of skill in the art, the processor may
select the match regions to account for vector splitting situa-
tions.

[0041] After selecting appropriate match regions, the pro-
cessor calculates the difference value by comparing the two
match regions. As an example, the difference value may be
calculated by determining the Sum of Absolute Differences
(SAD) between pixels values of the two regions. Other suit-
able methods for calculating the difference value will be
apparent to those of skill in the art. For example, the calcula-
tion of the difference value could be based on another differ-
ence measure and/or other measures (e.g., penalty values that
depend on candidate vector characteristics). After calculating
a difference value for each candidate vector, method 200
proceeds to step 250, where the processor selects the candi-
date vector with the lowest difference value as the motion
vector for the current block.

[0042] Method 200 then proceeds to step 255, where the
processor determines whether there are additional blocks to
be processed in row i. When there are additional blocks to be
processed, method 200 returns to step 240 for processing of
the next block in the row. Alternatively, when all blocks in the
current row have been processed, method 200 proceeds to
step 260.

[0043] In step 260, the processor increments the value of' i
to obtain the row number of the next row to be processed. For
example, when the motion estimation unit includes two pro-
cessors or co-processors, the processor may increment the
value of 1 by 2. It should be apparent that this step may be
modified based on the total number of processors included in
the unit. For example, when the unit includes four total pro-
cessors, the processor may instead increment the value of i by
4.

[0044] Method 200 then proceeds to decision step 265,
where the processor determines whether there are additional
rows to be processed. In particular, the processor may deter-
mine whether1iis less than or equal to the total number of rows
in the current frame. When there are additional rows to be
processed, method 200 returns to step 215 for further pro-
cessing. Alternatively, when there are no additional rows to be
processed, method 200 proceeds to step 270, where method
200 stops.

[0045] FIG. 3 is a schematic diagram 300 illustrating an
exemplary candidate block selection used in the parallelized
meandering 3DRS algorithm. As illustrated, a motion estima-
tion unit is currently processing three blocks in the frame,
including block (i, j). During processing of block (i, j), the

US 2010/0328538 Al

processor selects a candidate vector for each directly sur-
rounding block. In particular, as illustrated, the processor
may use the vector calculated for block (i, j—1) for the current
frame (i.e., a spatial candidate vector), as this block has
already been processed. As described in detail above, the
motion estimation unit may determine that a spatial vector is
not available for directly surrounding blocks (i-1, j-1), (i-1,
j),and (i-1,j+1), and, as aresult, use the spatial vectors for the
indirectly surrounding blocks (i-2, j-1), (i-2, j), and (i-2,
j+1). Finally, the motion estimation unit may use the calcu-
lated vector from a frame with a different time instance (i.e.,
atemporal candidate vector) for the blocks (i, j+1), (i+1,j-1),
(i+1,j), and (i+1, j+1).

[0046] FIG.4A isaschematic diagram 400 of an exemplary
parallelized meandering 3DRS algorithm in a first phase of
execution. As illustrated, four motion estimation (ME) pro-
cessors or co-processors, ME1 410, ME2 420, ME3 430, and
ME4 440, are simultaneously processing the blocks in a cur-
rent frame. ME1 410 and ME2 420 are currently processing
rows 3 and 5, respectively, starting with the leftmost block of
the rows. In contrast, ME3 430 and ME4 440 are currently
processing rows 4 and 6, respectively, starting with the right-
most block of the rows. In particular, ME1 410 is currently
processing block A, ME2 420 is currently processing block B,
ME3 430 is currently processing block C, and ME4 440 is
currently processing block D.

[0047] As illustrated, ME1 410 has selected four spatial
candidates from the directly surrounding blocks, as the entire
previous row has been processed, and four temporal candi-
dates. ME2 420 has selected three spatial candidates from the
indirectly surrounding blocks, as the directly surrounding
blocks in row 4 have not been processed. ME2 420 has also
selected one spatial candidate from the previously-processed
block in row 5 and four temporal candidates. Similarly, ME3
430 has selected three spatial candidates from the indirectly
surrounding blocks, one spatial candidate from the previ-
ously-processed block in row 4, and four temporal candi-
dates. As with ME3 430, ME4 440 has selected three spatial
candidates from the indirectly surrounding blocks, one spa-
tial candidate from the previously-processed block in row 6,
and four temporal candidates.

[0048] FIG.4B is aschematic diagram 400 of an exemplary
parallelized meandering 3DRS algorithm in a second phase
of execution. As illustrated, because ME1 410 and ME2 pro-
cess left-to-right, while ME3 430 and ME4 440 process right-
to-left, processing of the rows overlaps at around the halfway
point of the row. As a result, this phase of execution will allow
for selection of more spatial candidates from the directly
surrounding blocks.

[0049] Thus, as illustrated, MFE1 has selected seven spatial
candidates and one temporal candidate from the blocks sur-
rounding block E. Similarly, ME2 420 has selected seven
spatial candidates and one temporal candidate from the
blocks surrounding block F. ME3 430 has selected seven
spatial candidates and one temporal candidate from the
blocks surrounding block G. Finally, ME4 440 has selected
four spatial candidates and four temporal candidates from the
blocks surrounding block H.

[0050] Itshould beapparent that, in this manner, the motion
estimation unit processors may dynamically select the candi-
date vectors based on the execution progress in time. Such a
selection process ensures that the algorithm preferentially
uses the spatial candidates, thereby ensuring high-quality
estimation with minimal artifacts. Furthermore, because the

Dec. 30, 2010

algorithm dynamically selects candidate vectors, it avoids
simultaneous switching from the first phase to the second
phase for all rows, thereby avoiding the introduction of arti-
facts in the center of the image.

[0051] FIG. 5 is a schematic diagram of an exemplary
motion estimation unit 500 for implementation of a parallel-
ized meandering 3DRS algorithm. As illustrated, the motion
estimation unit 500 may include a control unit 510, one or
more processors or co-processors 520, 530, 540, and a
memory 550.

[0052] Control unit 510 may be a circuit or other electronic
arrangement designed to control the operation of the one or
more processors or co-processors. In particular, control unit
510 may control the flow of data through the processors 520,
530, 540 and coordinate the activities of the processors 520,
530, 540. As an example, control unit 510 may perform the
tasks of fetching, decoding, managing execution, and then
storing results of the operations. When the 3DRS algorithm is
implemented in a parallelized manner among multiple pro-
cessors or co-processors 520, 530, 540, control unit 510 may
coordinate scheduling and execution of the instructions used
for implementation of the algorithm.

[0053] Motion estimation unit 500 may also include one or
more processors or co-processors 520, 530, 540 for executing
the instructions of the algorithm. As detailed above, the modi-
fied 3DRS algorithm may be parallelized, such that the pro-
cessing of each row of blocks is performed by a particular
processor among a group of processors 520, 530, 540.
[0054] The motion estimation unit may also include
memory 550, which may be accessible by each processor
520, 530, 540 through direct memory access (DMA).
Memory 550 may be, for example, synchronous dynamic
random access memory (SDRAM), but is not limited to such
configurations. Other suitable memory components will be
apparent to those of skill in the art.

[0055] Memory 550 may be used to maintain data regard-
ing the variables used in the execution of the algorithm and
the results of the algorithm. Memory 550 may also store data
indicating the execution progress of the algorithm, indicating,
for each frame, whether processing of each block has com-
pleted. The processors or co-processors 520, 530, 540 may
then access memory 550 in executing the algorithm, such that
the algorithm may dynamically select candidate vectors for
use in determining a motion vector of a particular block.
Other suitable uses for the memory in the execution of the
algorithm will be apparent to those of skill in the art.

[0056] Itshould be apparent from the foregoing description
that various exemplary embodiments of the invention may be
implemented in hardware and/or firmware. Furthermore,
various exemplary embodiments may be implemented as
instructions stored on a machine-readable storage medium,
which may be read and executed by at least one processor to
perform the operations described in detail herein. A machine-
readable storage medium may include any mechanism for
storing information in a form readable by a machine. Thus, a
machine-readable storage medium may include read-only
memory (ROM), random-access memory (RAM), magnetic
disk storage media, optical storage media, flash-memory
devices, and similar storage media.

[0057] According to the foregoing, various exemplary
embodiments allow for a parallelizable 3DRS algorithm that
is scalable to multiple processing units, thereby enabling a
high-speed, effective solution for real-time motion estima-
tion. Furthermore, because the algorithm provides the good

US 2010/0328538 Al

convergence properties of the meandering scan, picture qual-
ity of the algorithm is as good as or better than the original
non-parallelized 3DRS algorithm.

[0058] Although the various exemplary embodiments have
been described in detail with particular reference to certain
exemplary aspects thereof, it should be understood that the
invention is capable of other embodiments and its details are
capable of modifications in various obvious respects. As is
readily apparent to those skilled in the art, variations and
modifications may be implemented while remaining within
the spirit and scope of the invention. Accordingly, the fore-
going disclosure, description, and figures are for illustrative
purposes only and do not in any way limit the invention,
which is defined only by the claims.

We claim:

1. A method for performing motion estimation on video
data comprising a plurality of frames, the method comprising:

reading, by a motion estimation unit, a current frame of the

plurality of frames from a memory, the current frame
comprising a plurality of rows;

selecting a motion vector for each respective block of pix-

els in a current row of the current frame, wherein the step

of selecting the motion vector comprises, for each

respective block:

selecting a candidate vector for at least one block
directly surrounding the respective block based on a
determination of whether the directly surrounding
block has been processed for the current frame,

calculating, for each candidate vector, a difference value
indicating an accuracy of motion estimation when the
candidate vector is used to represent motion of the
respective block, and

selecting, as the motion vector, the candidate vector with
a lowest difference value; and

processing at least one subsequent row by repeating the

step of selecting a motion vector for each block of pixels

in the at least one subsequent row, wherein processing

the at least one subsequent row begins prior to comple-

tion of processing of at least one block of the current row.

2. The method for performing motion estimation according
to claim 1, wherein the sub-step of selecting the candidate
vector comprises, for the at least one directly surrounding
block:

determining whether the directly surrounding block has

been processed for the current frame;
when the directly surrounding block has been processed
for the current frame, selecting a calculated vector of the
directly surrounding block as the candidate vector;

when the directly surrounding block has not been pro-
cessed for the current frame, determining whether an
indirectly surrounding block has been processed for the
current frame; and

when the indirectly surrounding block has been processed

for the current frame, selecting a calculated vector of the
indirectly surrounding block as the candidate vector.

3. The method for performing motion estimation according
to claim 1, wherein the sub-step of calculating the difference
value for each candidate vector comprises:

selecting a first match region in the current frame, wherein

the first match region corresponds to a position of the
respective block;

selecting a second match region in a frame with a different

time instance than the current frame, wherein the second

Dec. 30, 2010

match region corresponds to the position of the respec-
tive block shifted by the candidate vector;

calculating the difference value based on a comparison of

the first match region and the second match region.

4. The method for performing motion estimation according
to claim 1, wherein:

when the current row is an odd row, the step of selecting a

motion vector begins with a block at a first end of the
current row and proceeds sequentially across the current
row, and

when the current row is an even row, the step of selecting a

motion vector begins with a block at a second end of the
current row opposite the first end and proceeds sequen-
tially across the current row.

5. The method for performing motion estimation according
to claim 4, wherein a first group of at least one processor
performs processing for odd rows and a second group of at
least one processor performs processing for even rows.

6. The method for performing motion estimation according
to claim 5, wherein:

the first group of at least one processor, beginning at a first

end of each odd row, selects a motion vector for each
respective block of pixels until reaching a block substan-
tially halfway across each row,

the second group of at least one processor, beginning at a

second end opposite the first end, selects a motion vector
for every block of pixels in each even row, and

the first group of at least one processor, beginning at the

block substantially halfway across each of the first
groups of rows, completes processing of every block in
each odd row.

7. A motion estimation unit for performing motion estima-
tion on video data comprising a plurality of frames, the
motion estimation unit comprising:

amemory that stores a plurality of frames of the video data;

and

a plurality of processors, wherein, in processing a current

row in a current frame of the plurality of frames, a

particular processor of the plurality of processors:

reads the current frame from the memory, the current
frame comprising a plurality of rows; and

selects a motion vector for each respective block of
pixels in the current row of the current frame, wherein
the particular processor, for each respective block:

selects a candidate vector for at least one block directly
surrounding the respective block based on a determi-
nation of whether the directly surrounding block has
been processed for the current frame,

calculates, for each candidate vector, a difference value
indicating an accuracy of motion estimation when the
candidate vector is used to represent motion of the
respective block, and

selects, as the motion vector, the candidate vector with a
lowest difference value,

wherein a second processor of the plurality of processors

begins processing a subsequent row prior to completion
of processing of at least one block of the current row by
the particular processor.

8. The motion estimation unit according to claim 7,
wherein:

the memory stores data for each block of each frame, the

data indicating whether processing has completed for
each block, and

US 2010/0328538 Al

the particular processor accesses the data to make the deter-
mination of whether the at least one directly surrounding
block has been processed for the current frame.

9. The motion estimation unit according to claim 7,
wherein the memory is synchronous dynamic random access
memory (SDRAM).

10. The motion estimation unit according to claim 9,
wherein at least one processor accesses the memory using
direct memory access (DMA).

11. The motion estimation unit according to claim 7, fur-
ther comprising:

a control unit that coordinates execution of instructions by

the plurality of processors.

12. The motion estimation unit according to claim 7,
wherein at least one processor is at least one dedicated co-
processor.

13. The motion estimation unit according to claim 7,
wherein, for the at least one directly surrounding block, in
selecting the candidate vector, the particular processor:

determines whether the directly surrounding block has

been processed for the current frame;
when the directly surrounding block has been processed
for the current frame, selects a calculated vector of the
directly surrounding block as the candidate vector;

when the directly surrounding block has not been pro-
cessed for the current frame, determines whether an
indirectly surrounding block has been processed for the
current frame; and

when the indirectly surrounding block has been processed

for the current frame, selects a calculated vector of the
indirectly surrounding block as the candidate vector.

14. The motion estimation unit according to claim 7,
wherein, in calculating the difference value for each candi-
date vector, the particular processor:

selects a first match region in the current frame, wherein the

first match region corresponds to a position of the
respective block;
selects a second match region in a frame with a different
time instance than the current frame, wherein the second
match region corresponds to the position of the respec-
tive block shifted by the candidate vector; and

calculates the difference value based on a comparison of
the first match region and the second match region.

15. The motion estimation unit according to claim 7,
wherein:

when the current row is an odd row, the particular processor

begins the step of selecting a motion vector with a block
atafirst end of the current row and proceeds sequentially
across the current row, and

when the current row is an even row, the particular proces-

sor begins the step of selecting a motion vector with a
block at a second end of the current row opposite the first
end and proceeds sequentially across the current row.

16. The motion estimation unit according to claim 7,
wherein a first group of at least one processor performs pro-
cessing for odd rows and a second group of at least one
processor performs processing for even rows.

17. The motion estimation unit according to claim 16,
wherein the first group of at least one processor begins pro-
cessing substantially simultaneously with the second group
of at least one processor.

18. The motion estimation unit according to claim 16,
wherein:

Dec. 30, 2010

the first group of at least one processor, beginning at a first
end of each odd row, selects a motion vector for each
respective block of pixels until reaching a block substan-
tially halfway across each row,

the second group of at least one processor, beginning at a
second end opposite the first end, selects a motion vector
for every block of pixels in each even row, and

the first group of at least one processor, beginning at the
block substantially halfway across each of the first
groups of rows, completes processing of every block in
each odd row.

19. A machine-readable medium encoded with processor-
executable instructions for performing motion estimation on
video data comprising a plurality of frames, the machine-
readable medium comprising:

instructions for reading, by a motion estimation unit, a
current frame of the plurality of frames from a memory,
the current frame comprising a plurality of rows;

instructions for selecting a motion vector for each respec-
tive block of pixels in a current row of the current frame,
wherein the instructions for selecting the motion vector
comprise, for each respective block:

instructions for selecting a candidate vector for at least
one block directly surrounding the respective block
based on a determination of whether the directly sur-
rounding block has been processed for the current
frame,

instructions for calculating, for each candidate vector, a
difference value indicating an accuracy of motion
estimation when the candidate vector is used to rep-
resent motion of the respective block, and

instructions for selecting, as the motion vector, the can-
didate vector with a lowest difference value; and

instructions for processing at least one subsequent row by
repeating the step of selecting a motion vector for each
block of pixels in the at least one subsequent row,
wherein processing of the at least one subsequent row
begins prior to completion of processing of at least one
block of the current row.

20. The machine-readable medium according to claim 19,
wherein the instructions for selecting the candidate vector
comprise, for the at least one directly surrounding block:

instructions for determining whether the directly surround-
ing block has been processed for the current frame;

instructions for, when the directly surrounding block has
been processed for the current frame, selecting a calcu-
lated vector of the directly surrounding block as the
candidate vector;

instructions for, when the directly surrounding block has
not been processed for the current frame, determining
whether an indirectly surrounding block has been pro-
cessed for the current frame; and

instructions for, when the indirectly surrounding block has
been processed for the current frame, selecting a calcu-
lated vector of the indirectly surrounding block as the
candidate vector.

